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Abstract

The rate at which a mine detection system falsely identifies man-made or
natural clutter objects as mines is referred to as the system’s false alarm rate
(FAR).  Generally expressed as a rate per unit area or time, the FAR is one
of the primary metrics used to gauge system performance.  In this report, an
overview is given of statistical methods appropriate for the analysis of data
relating to FAR.  Techniques are presented for determining a suitable size
for the clutter collection area, for summarizing the performance of a single
sensor, and for comparing different sensors. For readers requiring more
thorough coverage of the topics discussed, references to the statistical
literature are provided.  A companion report addresses statistical issues
related to the estimation of mine detection probabilities.
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1 - INTRODUCTION

The primary statistical metrics used to assess performance for mine detection systems are

related to the probability of detecting actual targets (PD), and the false alarm rate (FAR).  A

companion report [Simonson, 1998] outlines some of the standard statistical techniques and

concepts used in assessing PD.  In this paper, models and calculations used to quantify the false

alarm rate are discussed.  These methods can be useful both in designing tests of mine detection

systems, and an analyzing the data collected during such exercises.

In target recognition applications, every detection is classified as "true" or "false".  A

detection is said to be true if an actual target (mine) is present at or near the indicated location.

Otherwise, it is false.  When controlled tests of mine detection systems are conducted, the

investigator knows the number, type, and location of actual mines encountered by each system.

Thus, it is sensible to characterize performance on target mines in terms of PD, with inferences

based on the ratio of the number of detections to the number of targets emplaced.  Typically, PD

varies with mine type and size.

All true detections are, by definition, caused by target mines.  By contrast, false

detections may arise from two different sources: known decoy objects (e.g., bolts, cans)

intentionally buried at surveyed locations in the range of the sensor, and the background

characteristics and natural variability of the test region itself.  In order to ensure that experiments

designed to test multiple detection systems are unbiased, it is important to distinguish between

these two sources.

During detection system tests, decoys (or "confusers") are sometimes emplaced to

provide diagnostic information about the types of objects that can cause a system to false alarm.

A discrete number of items is emplaced, and the detection probability can be estimated

separately for each different type of object.  This probability may be referred to as the

"probability of a false alarm" (PFA) for the particular decoy type.  Statistically, it is equivalent to

the "probability of detection" for a particular target type, and may be analyzed in the same

manner, using the methods outlined in Simonson [1998].  The distinction between PD and PFA
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is that a high-performing system will have a high PD for relevant targets and a low PFA for

common non-targets.

The analysis of "clutter" or "background" false alarms (those representing neither an

actual mine nor a known decoy) proceeds differently.  Because the investigator is unlikely to

have a full characterization of the subsurface of the test region, the cause of false alarms not

corresponding to decoy objects is generally unknown.  Depending on the particular sensor used,

false alarms may be due to rocks, pockets of loose sand, small metal scraps, buried organic

material, or other subsurface phenomena. Rather than try to assign a cause to each such detection

during the test, the investigator simply notes how many of them occur.  Coupled with

information about the area (or time) covered by the sensor, this data can be used to characterize

the rate at which false detections occur in clutter.  The purpose of this report is to introduce

appropriate statistical methods for assessing such rates.

Figure 1 may help to clarify the distinctions between detections due to targets, decoys,

and clutter.  The schematic plot shows the spatial layout of an experiment designed to estimate

PD for three different target types, PFA for two different decoy types, and FAR for one region

that is assumed to be fairly homogeneous.  Data related to all three measures is collected in a

single run of a sensor over the full test region.  Each detection is classified as to cause (known

target, known decoy, or unknown clutter) and the analysis proceeds separately for each type.

In the next section, the Poisson model for data related to clutter false alarm rates is

introduced.  Computations used in estimating the false alarm rate of a single detector are

described in section 3.  Methods for constructing confidence intervals, conducting hypothesis

tests, and specifying the size of the study area are all covered.  A technique for comparing the

false alarm rates of two different systems is given in section 4.  Graphical methods for presenting

results related to PD and FAR simultaneously are presented in section 5, and section 6 concludes

the report with a few additional considerations for data analysis.
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2 - THE POISSON MODEL

2.1 - Background and Assumptions

The Poisson distribution [Johnson, Kotz, and Kemp, 1992; Ripley, 1981] and the closely

related Poisson process [Çinlar, 1975; Taylor and Karlin, 1994] are often used to model

experimental data related to occurrence rates as a function of time or area.  While this report

focuses on spatial rates, extension to temporal rates is straightforward.

For applications in mine detection, the experimenter must develop a sensible protocol for

determining what constitutes a detection.  In addition, rules are needed for determining when a

detection corresponds to a known object (target mine or decoy) and when it is a clutter false

alarm.  Typically, if a detection occurs at a point on the surface lying within a circle of fixed

radius about the surface point corresponding to the center of a known buried object, that

detection is characterized as being due to the buried object.  (For analytical purposes, multiple

detections occurring within the same circle are generally treated as a single detection.)  To

compensate for targets of different size, the radius of each detection region is adjusted to the

dimensions of the corresponding object.  In order to eliminate ambiguity when assigning causes

to detections, decoys and mine targets should be emplaced in such a manner that their detection

regions do not overlap.  Detections occurring outside of all target and decoy circles are classified

as clutter false alarms.

In analyzing false alarm rates, two basic measurements are used.  The first measurement

is the number of clutter false alarms occurring while a detection system is under test.  The second

measurement is the difference between the total area covered by the sensor, and the combined

area of all covered regions corresponding to targets and decoys.  This latter figure represents the

area of the region covered within which any detection occurring would be characterized as a

clutter false alarm.  It is referred to as the clutter area.  Note that all decoy detections are omitted

from the clutter false alarm count, and all regions lying within decoy detection circles are

excluded from the clutter area.  This allows the experimenter planning a test comparing several
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different systems to include decoys that are attractive to one sensor only, without biasing the

reported false alarm rates.

The Poisson model assumes that each detection system being tested has a fixed (but

unknown) rate of clutter false alarms per unit area.  In statistics, this rate is usually represented

by the parameter λ, and is referred to as the intensity of the clutter false alarm process.  It is

assumed that λ is constant across the test region.

Some discussion of this assumption is in order.  To ensure that valid estimates of the

FAR can be obtained, tests should be conducted in regions that are believed to be fairly

homogeneous.  When substantial variation is known to exist, due to factors like changing surface

vegetation or moisture content, clay versus sandy soil, or shade versus direct sunlight, the full

test region should be divided into smaller sub-regions for performance analysis.  A different false

alarm rate is then computed for each set of conditions, and statistical tests (see Section 4) can be

conducted to determine whether the various environmental factors significantly affect

performance.

2.2 - Notation

Suppose that a mine detection system has a true intensity of λ false alarms per unit area

under certain conditions.  In a system test, let R be the total area covered by the sensor, while the

combined area of all regions corresponding to mine targets is RT, and the combined area of all

regions corresponding to decoys is RD.  The clutter area, RC, is equal to R − RT − RD.  Let K be a

random variable representing the number of clutter false detections; K is said to have the Poisson

distribution with parameter λRC  [Çinlar, 1975; Johnson, Kotz, and Kemp, 1992].  It is of interest

to make inferences about the intensity λ.

According to the Poisson model, the probability of observing k clutter false alarms is

given by:
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for k = 0, 1, 2, .  �  The quantity K /RC is an estimator of the unknown λ.  The uncertainty in this

estimator decreases as the clutter area covered increases: an experiment measuring 50 clutter

false alarms in 100 square meters is more informative than an experiment giving a single false

alarm in two square meters.  The mean and variance of K /RC are as follows [Johnson, Kotz, and

Kemp, 1992]:

λ     =






CR

K
E (2)

.      
CC RR

K
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(3)

The variance [Larsen and Marx, 1981] is a common measure of the uncertainty present in

an estimator.  The quantity (3) decreases as RC increases, demonstrating that experiments

covering a large clutter area will provide more certain information than smaller experiments.

Intensity also affects variance: for a fixed clutter area, variance increases with λ.

3 – ESTIMATION AND TESTING FOR A SINGLE POISSON PARAMETER

3.1 - Confidence Intervals for λλ

As discussed in Simonson [1998], it is common practice among statisticians, scientists,

and engineers to report parameter estimates along with uncertainty measures in the form of

confidence intervals.  Each such interval is associated with a specified degree of confidence,

representing the a priori probability that the interval will contain the true parameter value.

Informally speaking, 95% confidence intervals are constructed in such a manner that they will

have a 95% chance of containing the true value.  Formal definitions of confidence intervals can

be found in numerous texts [Bickel and Doksum, 1977; Cox and Hinkley, 1974; Silvey, 1975].

The degree of confidence in an interval is frequently represented algebraically in terms of

the quantity α, which is equal to one minus the a priori probability that the interval will contain

the true parameter value.  Thus, for a 95% confidence interval, α is equal to 0.05.  The standard
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notational convention uses the expression 100(1 − α)% to represent the certainty corresponding

to a generic confidence interval.

Two different approaches are employed to construct confidence intervals for a single

Poisson parameter, λ.  When the number of detections is large, the (continuous) normal

distribution is used to approximate the (discrete) Poisson [Larsen and Marx, 1981; Johnson,

Kotz, and Kemp, 1992].  This approximation makes the construction of confidence intervals

straightforward for large false alarm counts.  For small counts, the normal approximation is

inappropriate and a different format for confidence intervals is required.  The large sample

method is acceptable when the number of clutter detections exceeds 15 [Johnson, Kotz, and

Kemp, 1992].

3.1.1 - Small Sample Approach

The small sample method for computing confidence intervals for the Poisson parameter is

as follows.  Denote the lower limit of an interval by ΛL, and denote the upper limit by ΛU.  If k

false alarms occur in a clutter region of area RC, an approximate 100(1 − α)% confidence interval

for λ is defined by [Hald, 1952; Johnson, Kotz, and Kemp, 1992]:

2
2/,2 
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1
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L R

=Λ (4)
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Here the quantity 2
2/,2 αχ k  is equal to the α/2 quantile of the chi-square distribution with 2k

degrees of freedom, with 2 2/1),1(2 αχ −+k  defined in a similar manner.  Quantiles of the chi-square

distribution are tabulated in many statistics textbooks [e.g. Larsen and Marx, 1981], and are

readily available from most commercial statistical software packages.
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Equation (4) holds only for k > 0.  When no clutter false alarms are observed (k = 0), the

lower limit ΛL is set to 0.0, while the upper limit is still computed from (5).

A simple example illustrates the small sample method.  Suppose that k = 12 clutter false

alarms occur in a clutter region covering RC = 40 square meters.  Then the observed FAR is

given by 12/40 = 0.30 per m2.  To construct 95% confidence intervals, α is set at 0.05.  From a

table of the chi-square distribution, 2 025.0,24χ =12.401 and 2
975.0,26χ  = 41.923.  It follows from (4)

and (5) that (0.155, 0.524) is a 95% confidence interval for the false alarm rate (per square

meter) of the system under test.  Values of λ falling within this interval are deemed to be

consistent with the observed data.

Confidence interval width (ΛU − ΛL) is a natural measure of the uncertainty present in an

estimate.  Figure 2 shows lower and upper 95% confidence bounds, as well as interval widths,

for clutter false alarm counts ranging from zero to 15 in experiments with RC = 50 m2 and RC =

250 m2.  All of the values plotted are calculated from equations (4) and (5).

3.1.2 - Large Sample Approach

The large-sample method of computing confidence intervals uses the normal

approximation to the Poisson distribution.  When k exceeds 15 clutter false alarms, an

approximate 100(1 − α)% confidence interval for λ is given by [Johnson, Kotz, and Kemp,

1992]:
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Here, the quantity 2/1 α−z  represents the quantile of the standard normal distribution

corresponding to probability 1 − α/2.  For example, to get a 95% confidence interval, choose α =
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0.05, and use the value z0.975 = 1.960 in equations (6) and (7).  Tables of the standard normal

distribution are found in many statistics textbooks [e.g. Larsen and Marx, 1981], and are readily

available from most commercial statistical software packages.

Figure 3 shows upper and lower 95% confidence bounds, along with interval widths, for

k ranging from 15 to 250 detections in experiments with RC = 50 and 250 m2.  All of the values

shown are computed using Equations (6) and (7).  As in the small sample case (Figure 2), the

confidence interval widths computed here vary with both k and RC.

3.2 - Hypothesis Tests

Statistical tests provide a mechanism for choosing among two conflicting hypotheses

about the model underlying an observed data set [Koopmans, 1987; Silvey, 1975].  The null

hypothesis (H0) is accepted in the absence of strong evidence to the contrary.  The alternative

hypothesis (H1) is accepted when experimental data are deemed to be inconsistent with H0.  The

probability of rejecting H0 when H0 is true is referred to as the level of a test, and is often

denoted by α.

In the case of a single Poisson parameter, one may wish to test whether observed data are

consistent with the hypothesis that λ is equal to some specified value, λ0.  The appropriate null

and alternative hypotheses are given by:

00   : λλ =H (8a)

,    :  01 λλ ≠H (8b)

and the following test statistic is used:

.  
|ˆ|

    
0

0

CR
z

λ
λλ −= (9)

Here, CRk=λ̂  is the observed false alarm rate.  If the null hypothesis is true, the statistic (9)

has a distribution that is approximately standard normal for large k (greater than 15) [Johnson,
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Kotz, and Kemp, 1992].  If H1 is true, z will tend to be large.  An α-level test rejects H0 when z

exceeds 2/1 α−z , the 1 − α/2 quantile of the standard normal distribution.

As an example, consider a test of H0: λ = 0.10 versus H1: λ ≠ 0.10, and suppose that the

available data show k = 18 clutter false alarms in RC = 100 m2.  This gives an observed false

alarm rate of λ̂  = 0.18.  The test statistic (9) takes on the value z = 2.530.  To test at level α

=0.05, compare z to z0.975 = 1.960.  Because z > 1.960, H0 is rejected at level 0.05: the observed

data are not consistent with a false alarm rate of 0.10 per square meter.

The test statistic (9) is based on the normal approximation to the Poisson distribution and

is only appropriate when the number of false alarms is large.  For small k, the recommended

testing procedure would be to reject (8a) for values of λ0 not lying in the small-sample

confidence interval computed from (4) and (5).

3.3 - Clutter Area Calculation

The normal approximation to the Poisson distribution can be used to calculate the

approximate clutter area needed to keep the uncertainty in estimates of λ below some specified

level.  Here, uncertainty is expressed in terms of 100(1 − α)% confidence interval width.  The

experimenter begins by specifying an observed clutter false alarm rate, 0̂λ , and a tolerable

confidence interval width, W, corresponding to 0̂λ .  From equations (6) and (7), the width of a

100(1 − α)% confidence interval on λ, when the observed proportion is λ̂ , is given by:
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Setting the width equal to the desired value W, and solving (10) for RC gives:
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As an example, to obtain confidence intervals with width no greater than 0.10 for an observed

clutter false alarm rate of 0̂λ  = 0.5 per m2, it follows from (11) that the clutter area must cover at

least 771 square meters.

Of course, during the test planning phase the investigator will not know the observed

FAR.  Thus, the choice of an appropriate value of 0̂λ  for use in (11) is not clear.  One option is

to select a value that is believed to be a reasonable upper bound.  Because (11) increases with

0̂λ , this approach will give a conservative estimate of the required clutter area.

4 - COMPARING TWO POISSON PROPORTIONS

In practical applications of mine detection technology, false alarms can be costly in

dollars, time, and operational success.  Thus, the development of new sensors and processing

methods with reduced false alarm rates is a goal of much ongoing research.  Determining when

one sensor has significantly out-performed another is an important step in the analysis of data

from a multi-system demonstration or test.  In this section, a statistical hypothesis test for

comparing the performances of two different sensors is discussed.  The same technique may also

be used to assess the performance of a single system under different experimental conditions

(e.g., dry sandy soil versus wet clay), or in different replications of the same system over the

same clutter region.

4.1 - An Hypothesis Test for Two Poisson Rates

Suppose that system A covers a clutter area of 
ACR during test, with kA clutter false alarms

observed.  Let λA represent the true FAR underlying system A.  The quantities 
BCR , kB, and λB

are defined similarly for system B.

The FAR performance comparison is based on the question:  "Is the FAR demonstrated

by system A significantly different from the FAR demonstrated by system B?"  In statistical

terms, this question is phrased as an hypothesis test, with null and alternative hypotheses given

by:



16

BAH λλ     :0 = (12a)

BAH λλ     :1 ≠ . (12b)

One method for choosing between H0 and H1 conditions on the total number of false

alarms (kA + kB) and examines the percentage of this total that is due to each system [Hald, 1952;

Lampton, 1994].  Let πA represent the probability that any one false alarm is due to system A.

Conditional on the total number of false alarms, the experimental data may be viewed as a series

of kA + kB binomial trials, with two possible outcomes (system A or system B) at each trial.  The

probability of system A is equal to πA at every trial.

Under the null hypothesis (12a) the clutter false alarm rates underlying the two systems

are the same, and πA should therefore be equal to:

BA

A

CC

C
A RR

R

+
=    

0
π , (13)

which is simply the percentage of the total clutter area that was covered by system A.  (If

,  
BA CC RR =  it follows that 

0Aπ = 1/2).

Under this framework, the hypotheses given in (12) are equivalent to:

0A0     : ππ =AH (14a)

0A1     : ππ ≠AH . (14b)

Methods for testing hypotheses about a single binomial proportion are discussed in Simonson

[1998].  If both )( BAA kk +π and ))(1( BAA kk +− π  exceed five, the test statistic:
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may be used.  When the null hypothesis (14a) is true, s has a distribution that is approximately

standard normal [Fleiss, 1981].  If H1 is true, (15) will tend to be large.  An α-level test rejects

H0 when s exceeds the quantile of the standard normal distribution corresponding to probability 1

− α/2.

As an example of the method, suppose that system A covered a clutter area of 
ACR = 250

m2 and gave kA = 118 false alarms.  Suppose further that system B gave kB = 72 false alarms in a

clutter area of 
BCR  = 200 m2.  If the two systems have the same underlying false alarm rate, we

would expect that the fraction of false alarms due to system A would be approximately 
0Aπ  =

250/450 = 0.556.  The actual fraction due to A was 118/190 = 0.621.  From (15), the test statistic

has value s = 1.744.  To test at level 0.05, s is compared to z0.975 = 1.960.  Because s < 1.960, the

null hypothesis is not rejected: the difference in rates between the two systems is not significant

at the 5% level.

In applying the method outlined in this section to experimental data, it is important to be

aware of the assumptions used to derive the statistic (15).  Specifying )/(
0 BAA CCCA RRR +=π

implies that the two systems were tested under equivalent conditions.  If system A were tested in

a more challenging environment than system B, (15) would not represent a fair test of the

relative performances of the two systems.  Ideally, the two systems should cover the same clutter

region, so that 
ACR  equals 

BCR .  In many experimental situations, this is not possible.  However,

every effort should be made to ensure that the conditions encountered by the two systems are

comparable.
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5 - SUMMARY PERFORMANCE MEASURES: PD, PFA, AND FAR

As discussed in this report and the companion document [Simonson, 1998], the common

metrics used to characterize the performance of detection systems are PD (the probability of

detection), PFA (the probability of a false alarm), and FAR (the false alarm rate).  All three are

of vital interest, and they must be considered together in evaluating detection systems.  A system

that achieves a high PD but is subject to frequent false alarms may have little value in time-

critical applications.  Conversely, a system that rarely makes false detections but misses a

substantial proportion of real mines is unlikely to gain acceptance among users.  In this section,

some methods are presented for graphically summarizing system performance for targets,

decoys, and clutter.

Figure 4 is an example of a display style that can be used to show detection rates, along

with confidence intervals, for different types of known objects.  The viewer can see at a glance

that the hypothetical sensor in question had little difficulty in detecting large and small metal

mines, but frequently missed plastic mines.  While it rarely false alarmed on the wooden decoys,

it misclassified bolts as targets about 60% of the time.  Due to the relatively small number of

decoy objects utilized, the 95% confidence intervals for PFA on the decoys were considerably

wider than intervals characterizing PD for mine targets.  Variations of this general type of plot

can be used to display the performance of multiple sensors on the same test data, or the

performance a single sensor under varying experimental conditions.  In producing such a plot, it

is implicitly assumed that the same detection threshold was used across all target and decoy

types.

For many detection systems, the primary output at any given point in space is not a

binary (mine/no mine) decision, but rather a continuous one-dimensional variable that is

thresholded to determine whether or not a detection has occurred.  This variable may simply be

the magnitude of a received physical or chemical signal, or it may represent a measure of the

similarity between the received signal and a known signal that is characteristic of targets.  For

such data, it is common to display sensor performance in terms of PD and FAR, as a function of
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a varying threshold.  Displays of this type are called receiver-operator characteristic (ROC)

curves [Andrews, George, and Altshuler, 1997; Poor, 1988].

Assume that the variable in question tends to be large in the presence of the target.  When

a threshold level is chosen, detection is said to occur at each location in the test region giving a

value at or above this level.  As the threshold is reduced, the number of detections increases.

ROC curves are constructed by varying the threshold, and plotting observed false alarm rate (per

unit area) versus observed PD.  The points representing PD/FAR pairs are then connected to give

a smooth-looking curve.   Figure 5 is an example summarizing the performance of a hypothetical

sensor for small metallic mines under two different conditions: dry sandy soil, and wet sandy

soil.  For each condition, the PD corresponding to any given FAR can be read from the

appropriate curve.  For example, with a FAR of one per 100 m2, the sensor achieves a PD of

100% for dry soil and about 78% for wet soil.  Multiple curves can be used to graphically

illustrate performance differences observed across various sensor types, target types, and

experimental conditions.

6 - DISCUSSION

This report and its companion [Simonson, 1998] outline a variety of statistical techniques

pertinent to mine detection problems.  Methods are introduced for the estimation of PD, PFA,

and FAR.  Hypothesis tests are developed for assessing performance differences between two

different sensors, or between two different environments for the same sensor.  Basic formulas for

calculating sample sizes and clutter areas are included.  In selecting the material to be presented,

the goal has been to choose a few straightforward and broadly applicable techniques - not to

provide an exhaustive catalog and review of statistical methodology.  Of necessity, some

relevant subjects have been neglected.  In this section, two particularly important (and closely

related) topics are briefly addressed, with references provided to more complete accounts.  These

topics are the design of multi-factor experiments and the analysis of variance (ANOVA) for

multiple comparisons.
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When planning experiments to test the capabilities of different mine detection systems,

the designer is frequently interested in determining whether (and how much) a variety of

different experimental factors impact sensor performance.  Controlled factors may include target

type and size, soil type and moisture content, and burial depth.  Due to cost considerations, it

may not be feasible to conduct a large number of replications of every possible combination of

experimental factors.  However, by careful selection of the combinations to be tested, the

experimenter can ensure good estimates of the effects that are deemed the most important.  The

general field of statistical experimental design is concerned with the planning of efficient

experiments to provide the desired information in a readily extractable form.  Two standard

references in this area are the texts by Box, Hunter, and Hunter (1978) and Cox (1958).

The first step in analyzing data from multi-factor experiments often involves using the

analysis of variance to determine which factors (and combinations of factors) significantly

impact performance.  While ANOVA is a familiar and widely used technique, it is based on

several assumptions that may be questionable for mine detection data.  In particular, the response

variable is assumed to be normally distributed.  When the actual response represents a

percentage of mines detected, the exact distribution is binomial and the normal approximation

may be inadequate if the observed percentage is close to zero or one, or if the number of target

mines emplaced is small.   In such cases, it is necessary to transform the observed percentages to

a new domain in which the normality assumption is more nearly met.  The book by Box, Hunter,

and Hunter (1978) provides an excellent introduction to the mathematics of ANOVA.  The

collection edited by Hoaglin, Mosteller, and Tukey (1991) discusses a number of more advanced

topics, including transformation and graphical display.

It is hoped that the material covered in the present report and its companion, along with

the referenced statistical literature, will provide some useful guidance to the mine detection

community in the areas of experimental planning and statistical data analysis.
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Figure 1 - Schematic diagram of an experimental layout. This experiment is designed to provide estimates of PD
for three different mine target types, PFA for two different decoy types, and FAR over a clutter area believed to be
homogeneous.  Non-overlapping detection regions are used to compute the different estimates.  Detections occurring
within the dark circles are classified as target hits, while those occurring within the light circles are classified as
decoy hits.  Detections occurring within the striped region are designated as clutter false alarms.
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Figure 2 – Small sample 95% confidence intervals for a single Poison parameter.  Bounds and widths are
shown for clutter areas of RC = 50 m2 and RC = 250 m2. All of the values plotted were computed using the small
sample method of equations (4) and (5).  For a fixed number of false alarms, uncertainty decreases as area increases.
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Figure 3 - Large sample 95% confidence intervals for a single Poisson parameter.  Bounds and widths are
shown for clutter areas of RC = 50 m2 and RC = 250 m2. All of the values plotted were computed using the large
sample method of equations (6) and (7).
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Figure 4 - Sample graphical summary.  Results are shown for a hypothetical sensor tested against three different
types of mine targets and two types of decoys.  For each target or decoy type, the observed detection percentage is
shown as a solid dot and the corresponding uncertainty is represented in terms of a 95% confidence interval.  To
provide the viewer with some information about the experimental design, the number of times each object type was
encountered is also listed.
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Figure 5 - Sample ROC curve.  The curve illustrates the performance of a hypothetical sensor against a specific
target type (small metallic mines) under two different environments.  For each test condition, 31 target mines were
encountered, and a clutter area of 1000 square meters was covered.  For a clutter area of this size, false alarm rates
below 0.001/m2 cannot be estimated, so the curves are left truncated at this point.
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